对个人来说,这个钱很贵,对公司或者网红来说,这个钱并不是不能承受的。
滴滴车司机则很绝望,萝卜快跑来抢生意,机器人也来抢生意,一时间觉得自己简直就是食物链的最底层。
像雷君是去找陈元光打听消息,一些企业的高管是直接找到林甲。从早上捷达事件开始发酵,林甲的电话就没有中断过。
“Robin,这你放心,光甲航天不会做无人驾驶生意,机器人它只是技术层面进行验证。”
第一个打电话过来的就是百度的Robin,他没办法不急,百度的基本盘都快要被腾讯给挖空了。
百度无奈之下才allin的无人驾驶,前脚才和你光甲航天签完战略合作协议,整个框架性合作协议如果完整执行下来的话,总金额超过了两百亿rmb。
这合同签了连一年时间都没有,你现在告诉我机器人无人驾驶才是未来?
Robin坐不住了,真金白银的砸下去,我们不是战略合作伙伴吗?我这个战略合作伙伴怎么不知道你们技术都已经到了L4了。
无论是Robin还是百度都无法接受,百度账面上还躺着一千多亿的现金,可港股百度的市值都快要跌破八百亿rmb了。
“Robin,因为保密协议的缘故,我都不太清楚这背后具体的技术细节。
我更没有办法给你一个结论,相关技术是否会开源,以及技术路线到底是什么。
这个项目不属于光甲航天,这是元光主导下,由自然基金委员会的一些青年学者参与的项目,和光甲航天没有关系,我知道的时间不会比你们早到哪里去。
我知道你很急,但你先别急,我一定会在知道的第一时间和你信息共享。”
电话那头的Robin都要骂娘了,不急才怪呢。
但他又不可能冲着林甲发火,在电话里语气要多温柔有多温柔,他在想,自己要是在林甲面前估计都得泪洒现场,上演一出哭死董卓。
“林总,我没有任何责怪你的意思,只是这关系到整个百度以及百度数千名员工的生计,原谅我实在有些着急。”Robin说。
实在是心急如焚,光是看一眼港股百度的跳水惨状,Robin就坐不住了。
更别谈后续开董事会被股东代表们诘难,被网友们嘲讽这些,这些和跳水的股价比起来都是小事。
“Robin,你放心,我虽然没有办法给你什么结果,也没有办法做出什么承诺,但是以我对元光的了解,最后应该不会是吃独食。而是会和大家进行一个利益共享的。
过去无论是拓扑半金属还是钙钛矿电池,我们都是进行了技术授权,和上下游企业进行了利益的共享。
更别谈无人驾驶不仅关系到百度、华为、阿狸这样的科技巨头,同时还关系到比亚迪、蔚来、小米这些造车厂,从国家层面肯定也不会允许我们一家独大的。”
“那就好,林总,有消息之后恳请第一时间通知我一声。”Robin非常卑微,内心感到无比绝望。
老实说,技术共享对百度来说绝对是不折不扣的噩耗,不如他们一家独大呢。
百度自诩优势就在于无人驾驶的相关技术领先,你把技术共享了,百度领先优势荡然无存。
萝卜快跑和华为、五菱宏光联手搞的无人驾驶网约车拼成本?拼供应链管理?这不是拿自寻死路吗?
如果技术垄断,那百度还有存在的价值。一旦技术共享,百度那才是真正完蛋了。
他现在内心非常绝望,就像是确诊癌症的患者在等待第二次复诊结果一样。
电话一个接着一个,林甲的说辞也大差不差,她整个上午就只有一件事,那就是接电话。
“元光,大致情况就是这样。”林甲说。
陈元光说:“你可以和他们说,让他们不用担心,因为这技术压根就不是用来做无人驾驶的。
这么高的成本去搞无人驾驶压根就不划算。
我们之所以展示无人驾驶技术,单纯只是为了去验证技术的合理性。
整个机器人的成本接近五千万rmb,单说制造成本,不包括技术研发投入,专利费用。
因此它在无人驾驶领域压根就不具备性价比。
它的真正用途,以及实际技术细节也和无人驾驶没有太大关系。
包括它迭代出来的无人驾驶算法,后续我们也会开源,但即便开源了,估计也没有太大帮助。所以大可不必这么紧张,你就只需要把成本告诉他们就行,说即便后续工艺流程优化,大规模生产压缩成本,也不可能把成本降到百万以内。
至于无人驾驶算法其实意义也不大,它训练出来的无人驾驶算法,就只是针对这辆车,这个机器人,变了一点,它也称不上L4.”陈元光说。
这搞得林甲非常好奇,“这到底是怎么做到的?”
陈元光说:“你可以理解成,我们培养出了一个专门的机器人司机,它就只干这一件事,它的经验是从人类大脑里提取出来的。
怎么说呢,你可以理解成我们用一种脑机装置提取了网约车司机的脑电波,然后把这些脑电波作为原始数据喂给了机器人。
然后机器人基于这些数据开始试着开车,先在实验路面开,然后去园区开,再到一些城市的新区开,最后才是普遍上路。
中间没有任何人为的干预,初始的模型它就会开车,但也仅限于最基本的行驶规则。
在大规模投喂网约车司机开车过程中的脑电波数据之后,它开始学会了这项技能,你可以理解成它把技能进行了复制。
但背后的原理、到底是怎么实现的,我们一概不知。它有点类似人工智能领域的涌现。”
涌现效应在人工智能领域是指,原本的模型性能实现了陡增,数据上升曲线中的一个陡峭的跃迁。
像深度学习的“涌现”,有两层意思。一层是说,随着神经网络规模、训练机器速度、样本数量不断增加,到了一定规模以后,忽然一下就“量变到质变”,神经网络能力跃升“涌现”,把图像识别效果大幅提升。第二层是说,深度学习在图像识别领域表现极好,这个能力还迅速推广到了其它计算机领域,甚至改变了其它学科,能力的应用范围也实现了涌现。
很明显,陈元光所指的是,当我们用人类大脑数据来培养机器人的人工智能之后,它的技能水平出现了“涌现”。
(本章完)
(请记住本站地址:www.doupo7.com)